Multiparametric MRI Analysis for the Identification of High Intensity Focused Ultrasound-Treated Tumor Tissue
نویسندگان
چکیده
PURPOSE In this study endogenous magnetic resonance imaging (MRI) biomarkers for accurate segmentation of High Intensity Focused Ultrasound (HIFU)-treated tumor tissue and residual or recurring non-treated tumor tissue were identified. METHODS Multiparametric MRI, consisting of quantitative T1, T2, Apparent Diffusion Coefficient (ADC) and Magnetization Transfer Ratio (MTR) mapping, was performed in tumor-bearing mice before (n = 14), 1 h after (n = 14) and 72 h (n = 7) after HIFU treatment. A non-treated control group was included (n = 7). Cluster analysis using the Iterative Self Organizing Data Analysis (ISODATA) technique was performed on subsets of MRI parameters (feature vectors). The clusters resulting from the ISODATA segmentation were divided into a viable and non-viable class based on the fraction of pixels assigned to the clusters at the different experimental time points. ISODATA-derived non-viable tumor fractions were quantitatively compared to histology-derived non-viable tumor volume fractions. RESULTS The highest agreement between the ISODATA-derived and histology-derived non-viable tumor fractions was observed for feature vector {T1, T2, ADC}. R1 (1/T1), R2 (1/T2), ADC and MTR each were significantly increased in the ISODATA-defined non-viable tumor tissue at 1 h after HIFU treatment compared to viable, non-treated tumor tissue. R1, ADC and MTR were also significantly increased at 72 h after HIFU. CONCLUSIONS This study demonstrates that non-viable, HIFU-treated tumor tissue can be distinguished from viable, non-treated tumor tissue using multiparametric MRI analysis. Clinical application of the presented methodology may allow for automated, accurate and objective evaluation of HIFU treatment.
منابع مشابه
PET and MRI-guided focused ultrasound surgery for hypoxic-tissue ablation combined with radiotherapy in solid tumors
Background: The rationale was to develop an ablation approach to destroy regions of tumor resistant to radiation and thus reduce the time required for whole tumor ablation, while improving overall tumor control after radiotherapy. Materials and Methods: The system is composed of a micro positron emission tomography (mPET), 7T magnetic resonance imaging (MRI), and a customized MRI-compatible foc...
متن کاملNumerical Study for Optimizing Parameters of High-Intensity Focused Ultrasound-Induced Thermal Field during Liver Tumor Ablation: HIFU Simulator
Introduction High intensity focused ultrasound (HIFU) is considered a noninvasive and effective technique for tumor ablation. Frequency and acoustic power are the most effective parameters for temperature distribution and the extent of tissue damage. The aim of this study was to optimize the operating transducer parameters such as frequency and input power in order to acquire suitable temperatu...
متن کاملTherapeutic effects of high intensity focused ultrasound for in patients with benign uterine tumors with regard to lifestyle and obstetric characteristics
Background: The present investigation compared the decrease in the volume of benign tumor before and after High Intensity Focused Ultrasound (HIFU) treatment to evaluate the therapeutic effects of HIFU. in terms of Lifestyle and obstetric characteristics of in patients with Benign Uterine Tumors. Materials and Methods: To collect the data on each patients’ lifestyle and obstetric characteristic...
متن کاملIn vivo photoacoustics and high frequency ultrasound imaging of mechanical high intensity focused ultrasound (HIFU) ablation.
The thermal effect of high intensity focused ultrasound (HIFU) has been clinically exploited over a decade, while the mechanical HIFU is still largely confined to laboratory investigations. This is in part due to the lack of adequate imaging techniques to better understand the in-vivo pathological and immunological effects caused by the mechanical treatment. In this work, we explore the use of ...
متن کاملSignal Intensity of High B-value Diffusion-weighted Imaging for the Detection of Prostate Cancer
Background: Diffusion-weighted imaging (DWI) is a main component of multiparametric MRI for prostate cancer detection. Recently, high b value DWI has gained more attention because of its capability for tumor characterization. Objective: To assess based on histopathological findings of transrectal ultrasound (TRUS)-guided prostate biopsy as a reference, an...
متن کامل